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Abstract. As a generalization of Wedderburn’s classic theorem, it is shown
that the multiplicative group of a noncommutative finite dimensional division
algebra cannot be finitely generated. Also, the following conjecture is investi-
gated: An infinite non-central normal subgroup of GLn(D) cannot be finitely
generated.

1. Introduction

The general question of what groups can occur as multiplicative groups of a non-
commutative division algebra is an unsolved problem, but some progress has been
made along this line. For instance, Hua has proved that the multiplicative group
of a noncommutative division algebra cannot be solvable. Also, in Chapter 3 of [4],
there are several group theoretic conditions whose occurrence in the multiplicative
group of a division algebra entails the commutativity of the algebra. Much research
in recent years has been focused on the study of the structure of the multiplicative
subgroups of division algebras; for example see [1], [3], [6], [7], [8], [10], [11], and [12]
for an introduction. Before stating our results, we fix some notation. Throughout,
D is a division algebra with centre F ; we shall denote their multiplicative subgroups
by D∗, F ∗, respectively.

Our first result is a generalization of a beautiful commutativity theorem which
was discovered by Wedderburn in 1905, that is:

“If D∗ is a finite group, then D is commutative.”
Here for finite dimensional division algebras over their centres, we show that

“If D∗ is a finitely generated group, then D is commutative.”
It is believed that the assumption for D being finite dimensional is superfluous

in the above statement, and so the following conjecture will arise naturally:

Conjecture 1. If D∗ is finitely generated, then D is commutative.

The above result may be extended to general linear groups over D. To be more
precise, we prove that if D is an infinite division algebra with [D : F ] < ∞, then
GLn(D), n ≥ 2, contains no non-central finitely generated normal subgroups. But
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in the infinite dimensional case one does not know if the same conclusion holds. So,
it seems natural to pose the following conjecture:

Conjecture 2. If D is a division algebra and n is a natural number, then the
infinite non-central normal subgroups of GLn(D) are not finitely generated.

In [14, p. 429], it has been proved that if x ∈ D\F , then |cl(x)| = |D|, where
cl(x) denotes the set of all conjugates of x. This implies that the multiplicative sub-
group of any uncountable division algebra cannot contain any non-central finitely
generated normal subgroup. For if a ∈ N\F , then cl(a) ⊂ N and N must be
uncountable. In the general case, it is not known whether a multiplicative group
of a division algebra can contain a non-central finitely generated normal subgroup.
We recall that the finite subgroups of the multiplicative group of a division algebra
have been determined by Amitsur in [2]. It is easily seen that if N �D∗ and N is
finite, then N ⊂ F . We begin the material of this note with the following

Theorem 1. Let D be a division algebra of finite dimension over its centre F . If
D∗ is finitely generated, then D is commutative.

Proof. Since D∗ is finitely generated, we conclude that the Whitehead groupK1(D)
:= D∗/D′ is also finitely generated. Therefore every subgroup of K1(D) must be
finitely generated (cf. [14]). In particular, the group F ∗D′/D′ and consequently
F ∗/F ∗ ∩D′ is also finitely generated. First, we claim that F ∗ ∩D′ is finite. To see
this, it is enough to show that any x ∈ F ∗ ∩D′ is a root of a polynomial xn − 1,
where n is the index of D. Let x ∈ F ∗ ∩D′. Since x ∈ D′, there exist commutators
ci ∈ D′ such that x = c1c2 . . . cr. Now, taking the reduced norm from both sides
of the equality, we obtain xn = 1 and the claim is established. Now, the group
F ∗/F ∗ ∩ D′ is finitely generated and F ∗ ∩ D′ is finite. Thus F ∗ must be finitely
generated. Finally, we show that F ∗ is finite and so D is finite and commutative.
To prove this, we consider two cases.
i) Char F = 0. Denote the rational numbers by Q. In this case Q∗ is a subgroup

of F ∗. But F ∗ is a finitely generated abelian group. This implies that Q∗ is finitely
generated which is nonsense.
ii) Char F = p > 0. First we assume that F is algebraic over its prime subfield

Zp, say. It follows that F ∗ is a torsion group and since F ∗ is finitely generated, we
conclude that F ∗ is finite as desired.

Thus, without loss of generality, we may assume that there exists an element
x ∈ F which is transcendental over Zp. So the field Zp(x) is a subfield of F . We
claim that for any natural number m, there exists an irreducible polynomial of
degree m in Zp[x]. Consider the finite field of pm elements and suppose that α is a
generator for its cyclic group. It is now easy to see that the minimal polynomial of α
over Zp is an irreducible polynomial of degree m and so the claim is established. We
denote this polynomial by fm(x). Since F ∗ is a finitely generated abelian group we
may consider it as a finitely generated Z-module. It follows that F ∗ is Noetherian as
Z-module. Let Gi, i = 1, 2, . . . , be the group generated by f1(x), f2(x), . . . , fi(x),
respectively. Now the following ascending chain of subgroups of F ∗ does not stop,

G1 ⊂ G2 ⊂ G3 ⊂ . . . .

This contradicts the Noetherian condition.

Before stating the next theorem we need the following lemma (cf. [9] or [10]).
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Lemma. Let D be an algebraic division algebra over its centre F . Then for any
x ∈ D there exists natural number n(x) such that xn(x) = rc, where r ∈ F and
c ∈ D′.

Theorem 2. Let D be a division algebra algebraic over its centre F . If D∗ is
finitely generated, then so is its derived group D′.

Proof. Suppose that D∗ is the group generated by the elements x1, . . . , xm. By
the Lemma, there exist natural numbers ni (1 ≤ i ≤ m), such that xnii = rici,
where ri ∈ F and ci ∈ D′. Assume that F1 is the group generated by the elements
r1, . . . , rm. Now, put G(D) := D∗/F1D

′. It is easily checked that G(D) is an

abelian torsion group whose exponent divides
m∏
i=1

ni. Furthermore, G(D) is finitely

generated since D∗ is finitely generated. This implies that G(D) is finite. Thus
F1D

′ is finitely generated (cf. [13, p. 298]). Using the isomorphism theorems for
groups, we conclude that D′/(F1 ∩ D′) is finitely generated. On the other hand,
F1∩D′ is finitely generated because F1 is an abelian finitely generated group. Since
both groups D′/(F1 ∩D′) and F1 ∩D′ are finitely generated, we conclude that D′

is finitely generated.

Theorem 3. Let D be a finite dimensional division algebra over its centre F . If N
is a non-central finitely generated normal subgroup of D∗, then there exists a finite
set Λ ⊂ F such that F = P (Λ), where P is the prime subfield of F .

Proof. Assume that L is the division algebra generated by all elements ofN . Since L
is invariant under all inner automorphisms of D, by Cartan-Brauer-Hua’s Theorem
(cf. [13, p. 272]), L = D or L is central. If L is central, then N is central, a
contradiction. Thus, we may assume that L = D. Suppose that [D : F ] = n
and consider the regular matrix representation of D in GLn(F ). Since N is finitely
generated, there exist matrices A1, . . . , Ak ∈ GLn(F ), such that N = 〈A1, . . . , Ak〉.
Let Λ be the set of all elements in F occurring as the entries of Ai and A−1

i , i =
1, . . . , k. If H is the subring generated by N , then H is a subring of Mn(P (Λ)),
the n by n matrix ring over P (Λ), where P (Λ) is the subfield of F generated by Λ.
Now, since L ⊂ Mn(P (Λ)) we conclude that aI ∈ Mn(P (Λ)), for any a ∈ F ∗ and
so a ∈ P (Λ). Hence, F = P (Λ) and the proof is complete.

Now, we investigate the structure of normal subgroups of D∗ to see if they can
be finitely generated. As we have seen before, if D is uncountable, then there is no
non-central finitely generated normal subgroup in D∗. Therefore the multiplicative
group of real quaternions does not contain any non-central finitely generated normal
subgroups. The next result shows that for a finite dimensional division ring whose
centre is a subset of algebraic numbers, the same conclusion holds and so the rational
quaternions does not contain any non-central finitely generated normal subgroups.

Theorem 4. Let F be an algebraic extension of Q, and D be a finite dimensional
division algebra over its centre F . Then D∗ contains no non-central finitely gener-
ated normal subgroups.

Proof. If N is a non-central finitely generated normal subgroup of D∗, then by
Theorem 3 there exist elements r1, . . . , rs ∈ F such that F = Q(r1, . . . , rs), and
so [F : Q] = m < ∞. Assume now that [D : F ] = n and put k = mn. Thus
D∗ has a matrix representation in GLk(Q). Let 1, α2, . . . , αn be an F -basis of D.
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Let us consider an element a ∈ N\F . Since a is not in the centre we conclude
that a does not commute with all αi’s. Without loss of generality assume that
aα2 6= α2a. Assume also that A,B ∈ GLk(Q) be the matrix representations of
a, α2, respectively. It is clear that for each x ∈ Q, the matrix representation of
x+ α2 is Bx = xI +B. Since N is finitely generated, by the argument used in the
proof of Theorem 3, we conclude that there is a set Λ = {m1/n1, . . . ,mt/nt} ⊂ Q
such that each element ofN has a matrix representation inGLk(Z[Λ]). On the other
hand, N�D∗ and so for each element x ∈ Q we have BxAB−1

x ∈ GLk(Z[Λ]). Since
detBx is a polynomial in x of degree k, and for each 1 ≤ i, j ≤ k, the (i, j)-th entry
of B−1

x is of the form fij(x)/g(x) ∈ Q(x), where deg g(x) = k, deg fij(x) ≤ k−1, we
conclude that the (i, j)-th entry of the matrix BxAB−1

x is of the form fij(x)/g(x),
where for each 1 ≤ i, j ≤ k, we have deg fij(x) ≤ k. If for each 1 ≤ i, j ≤ k, there
are rational numbers qij such that for any x ∈ Q, fij(x)/g(x) = qij , then for any
x1, x2 ∈ F with x1 6= x2, we have (x1 + α2)a(x1 + α2)−1 = (x2 + α2)a(x2 + α2)−1.
This implies that x1(aα2 − α2a) = x2(aα2 − α2a) and since aα2 − α2a 6= 0 we
conclude that x1 = x2, a contradiction. Thus there exists an entry of BxAB−1

x ,
say (i, j)-th which depends on x. Put fij(x) =

∑k
i=0 aix

i, g(x) = xk +
∑k−1
i=0 bix

i.
Thus for each x ∈ Q we have fij(x)/g(x) ∈ Z[Λ]. If ak = mt+1/nt+1, then for each
x ∈ Q we obtain

fij(x)
g(x)

− ak ∈ Z[Λ ∪ {mt+1/nt+1}].

So there exists a polynomial f(x) ∈ Q[x] such that deg f(x) ≤ k − 1 and for each
x ∈ Q we have f(x)/g(x) ∈ Z[Λ ∪ {mt+1/nt+1}]. Multiplying f(x) and g(x) by
suitable scalars, we may assume that f(x), g(x) ∈ Z[x]. Put f(x) =

∑k−1
i=0 a

′
ix
i ∈

Z[x], g(x) =
∑k

i=0 b
′
ix
i. Since detB 6= 0, we may assume that b′0 6= 0. Now,

change the variable x to b′0x to obtain f1(x), g1(x) ∈ Z[x], such that deg g1 = k,
degf1 ≤ k − 1, where the constant term of g1(x) is 1, and for each x ∈ Q we have

f1(x)/g1(x) ∈ Z[Λ ∪ {mt+1/nt+1}].

Assume that S = {p1, . . . , pl} is the set of all primes occurring in the factor-
izations of n1, . . . , nt+1 into prime numbers. For each natural number r, put
xr = (p1p2 . . . pl)r. Since deg f1 < deg g1, for a large enough number r, we ob-
tain that f1(xr)/g1(xr) < 1. On the other hand, for each r ≥ 1, and each 1 ≤ i ≤ l,
g1(xr) and pi are coprime, that is, (g1(xr), pi) = 1. It is not hard to see that
if u/v ∈ Z[m1/n1, . . . ,mt+1/nt+1] with (u, v) = 1, then each prime factor of v
belongs to S. Now since f1(xr)/g1(xr) ∈ Z[m1/n1, . . . ,mt+1/nt+1] and for each
1 ≤ i ≤ l, r ≥ 1, (g1(xr), pi) = 1, we reach a contradiction, and so the result
follows.

To prove our next result, we need the following

Theorem A (cf. [15, p. 56]). Let R be a finitely generated integral domain. Then
GLn(R) contains a normal subgroup T of finite index such that all the elements of
finite order in T are unipotent (so if CharR = 0, T is torsion-free).

The Char R = 0 case of the above theorem was proved by A. Selberg and
independently by M. I. Kargapolov. Selberg’s method of proof can be extended to
give a proof of the whole of the theorem. We are now in the position to prove the
following theorem.
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Theorem 5. Let D be a division algebra of finite dimension over its centre F . If
N is an infinite non-central normal subgroup of GLn(D), n ≥ 2, then N cannot be
finitely generated.

Proof. Assume that N is an infinite non-central finitely generated normal subgroup
of GLn(D), n ≥ 2. Since D is of finite dimension over F , we may view N as a
subgroup GLnm(R), where R is a finitely generated integral domain and m = [D :
F ]. Furthermore, since N � GLn(D) and N is non-central, it is well known that
SLn(D) ⊂ N . By Theorem A, GLnm(R) contains a normal subgroup T of finite
index such that all the elements of finite order in T are unipotent. Now, we have
[N : N ∩T ] = [TN : T ] ≤ [GLnm(R) : T ] ≤ ∞. But N ∩T is a subnormal subgroup
of GLn(D). If N ∩T is non-central, then we find SLn(D) ⊂ N ∩T . Let us consider
the element

A =
[

0 −1
1 1 0

0 I

]
∈ T,

where I is identity matrix of order n − 2. It is easily checked that A is of finite
order but it is not unipotent, a contradiction. Therefore assume that N ∩ T ⊂ FI.
Since SLn(D) ⊂ N , for any 0 6= x ∈ D, we have[

x 0
0 x−1 0
0 I

]
∈ N.

If [N : N ∩ T ] = r, then for any x ∈ D we find x2r = 1. This implies that F is
finite and consequently D = F , which contradicts the fact that N is infinite.

If G is any group, Φ1(G) denotes the intersection of all the maximal subgroups
of finite index in G, or G itself if none such exist. We use the following theorems
to prove our last result.

Theorem B (cf. [15, p. 63]). If R is a finitely generated integral domain and G is
a subgroup of GLn(R), then Φ1(G) is nilpotent.

Theorem C (cf. [12]). Let G be a finitely generated linear group that has no solv-
able subgroups of finite index. Then G has maximal subgroup of infinite index.
Moreover the set of such subgroups is uncountable.

Theorem D (cf. [14, p. 440]). If D is a division algebra over its centre F , G a
non-central subnormal subgroup of D∗, then G is not solvable.

Theorem 6. Let D be a division algebra of finite dimension over its centre F . If
N is a non-central finitely generated normal subgroup of D∗, then N contains max-
imal subgroups of finite as well as infinite index. Moreover, the set of all maximal
subgroups of infinite index is uncountable.

Proof. If N is a non-central normal subgroup of D∗, then, as we saw before, there
is a finitely generated integral domain R such that N < GLn(R), where n is the
dimension of D over F . First we show that N has maximal subgroups of finite
index. Indeed, if there is no such maximal subgroup, by Theorem B, we have that
Φ1(N) = N is nilpotent. But, by Theorem D, N cannot be nilpotent which is a
contradiction. Now, we claim that N has maximal subgroups of infinite index. To
do this, by Theorem C, it is enough to show that N has no solvable subgroups
of finite index. Suppose that H is such a subgroup of N . Thus we have K =⋂
x∈N xHx

−1 is a normal subgroup of finite index in N . Furthermore, since H is
solvable we conclude that K is also solvable. Now, Theorem D implies that K is
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central. Assume that [N : K] = m; then for any x ∈ N , we have xm ∈ F . Now,
consider the element u ∈ N ∩ D′. We have um = r ∈ F and so (N(u))m = rn,
where N is the norm function of D to F . Since u ∈ D′ we conclude that umn = 1.
Thus, by Theorem 8 of [5], we obtain N ∩D′ ⊂ F . Now, a result of [14, p. 440]
implies that either N or D′ is central. Our hypothesis forces that D′ ⊂ F , i.e., D′ is
radical over F . Therefore, by Lemma 2 of [10], D is commutative which contradicts
the fact that N is non-central.
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